DETERMINATION OF THE REACTION HEAT AND STUDIES OF THERMODYNAMIC FUNCTIONS Hydrolytic polymerization of chromium(III) at relatively high concentrations by microcalorimetry

Lu Chengxue^a, Yu Xiufang^b and Zhang Honglin^b

^aDepartment of Chemistry, Shandong University, Jinan 250100 ^bDepartment of Chemistry, Qufu Normal University, Qufu 273165, P. R. China

(Received April 4, 1995; in revised form January 20, 1996)

Abstract

The hydrolytic polymerization of Cr^{3+} at relatively high concentrations was studied by microcalorimetry. The thermal curves were determined with a 2277 thermal activity monitor. From the curves, the identified reaction heats $(\Delta r H_m^{\sigma})$, hydrolysis constants (K) and thermodynamic functions $(\Delta r G_m^{\sigma}, \Delta r S_m^{\sigma})$ were calculated at different temperatures.

Keywords: chromium(III), hydrolytic polymerization, reaction heat, thermodynamic functions

Introduction

Hall [1] and Anbang [2] have reported studies on the products $(Cr_2(OH)]^{5+}$, $[Cr_3(OH)_2]^{7+}$ of the hydrolytic polymerization of Cr^{3+} . Luo Qinhui and Dai Anbang [3, 4] have published the hydrolysis constants of this reaction.

The purpose of this work has been to determine the reaction heat $(\Delta r H_m^{\sigma})$ of the mentioned reaction under similar experimental conditions and to calculate the hydrolysis constants (K^{σ}) and thermodynamic functions $(\Delta r G_m^{\sigma}, \Delta r S_m^{\sigma})$ of the hydrolysis process of Cr³⁺.

Experimental

Equipment

The thermal curves of the hydrolytic polymerization of Cr^{3+} was measured with a 2277 thermal activity monitor (Sweden), which had a detection limit of 0.15 μ W and a baseline stability of 0.2 μ W/24 h.

Materials

 $0.2 \text{ mol } dm^{-3}$ chromic nitrate and $0.5 \text{ mol } dm^{-3}$ sodium nitrate were used as reaction system.

0.5 mol dm⁻³ sodium nitrate was used as reference system.

0368–4466/97/ \$ 5.00 © 1997 Akadémiai Kiadó, Budapest

John Wiley & Sons, Limited Chichester

Method

The thermal curves of the hydrolytic polymerization of Cr^{3+} were recorded using sealed ampoules, one containing a reference solution and the other the reaction sample. The sample normally occupied position A and the reference occupied position B in the monitor, each ampoule contrained 2 ml sample (or reference) and 2 ml of air.

All measurements were carried out at 313 K and the amplifier of the monitor was set at 30 μ W.

Results and discussion

A typical curve of the hydrolytic polymerization of Cr^{3+} at 313 K is shown in Fig. 1.

Figure 1 consists of two exothermic peaks curve abc and curve cde. From this curve, the value of $\Delta r H_m^{\sigma}(1)$ of 9900 J mol⁻¹ corresponding to the exothermic process (1) and of $\Delta r H_m^{\sigma}(2)$ of 21600 J mol⁻¹ corresponding to the exothermic process (2) are obtained.

$$2Cr^{3+} + H_2O \rightleftharpoons^{K_{(1)}^o} [Cr_2(OH)]^{5+} + H^+$$
 (1)

and

$$3[Cr_2(OH)]^{5+} + H_2O \rightleftharpoons^{K_{(2)}^0} 2[Cr_3(OH)_2]^{7+} + H^+$$
 (2)

With the help of literature data: $\lg K_{(1)}^{\sigma} = -2.68$, $\lg K_{(2)}^{\sigma} = -3.84$, published by Lou Qinghue *et al.* and the dependences $\Delta r G_m^{\sigma} = -RT \ln K^{\sigma}$ and $\Delta r G_m^{\sigma} = \Delta r H_m^{\sigma} - T \Delta r S_m^{\sigma}$, the hydrolysis constants (K^{σ}) and thermodynamic functions ($\Delta r G_m^{\sigma}, \Delta r S_m^{\sigma}$) of the hydrolysis process were obtained at different temperatures (For data see Tables 1 and 2).

Fig. 1 Thermal curve of the hydrolytic polymerization of chromium(III) at 313K

<i>T</i> /K	293	298	303	308	313	318	323
lgK ^o ₍₁₎	-2.79	-2.76	-2.73	-2.71	-2.68	-2.65	-2.63
$K_{(1)}^{\sigma} \times 10^3$	1.61	1.73	1.84	1.96	2.09	2.22	2.35
$\Delta r G_{m(1)}^{\sigma} / kJ \text{ mol}^{-1}$	15.66	15.76	15.84	15.96	16.06	16.16	16.26
$\Delta r S_{m(2)}^{\sigma} / \mathbf{J} \mathbf{K}^{-1} \mathbf{mol}^{-1}$	-19.7	-19.7	-19.7	-19.7	-19.7	-19.7	-19.7

Table 1 Hydrolysis constants and thermodynamic functions of process (1) at different temperatures

Table 2 Hydrolysis constants and thermodynamic functions of process (2) at different temperatures

<i>T</i> /K	293	298	303	308	313	318	323
$\lg K^{\sigma}_{(2)}$	-4.09	-4.02	-3.96	-3.90	-3.84	-3.78	-3.73
$K_{(2)}^{\sigma} \times 10^4$	0.820	0.952	1.10	1.26	1.45	1.65	1.87
$\Delta r G_{m(2)}^{\sigma}/kJ \text{ mol}^{-1}$	22.92	22.94	22.97	22.99	23.01	23.03	23.06
$\Delta r S^{\sigma}_{m(2)}/J K^{-1} mol^{-1}$	4.50	4.50	4.50	4.50	4.50	4.50	4.50

It can be seen in Tables 1 and 2 that the values of $K_{(1)}^{\sigma}$, $K_{(2)}^{\sigma}$, $\Delta r G_{m(1)}^{\sigma}$, $\Delta r G_{m(2)}^{\sigma}$, $\Delta r S_{m(1)}^{\sigma}$ and $\Delta r S_{m(2)}^{\sigma}$ all increase with temperature.

Conclusion

The recommended hydrolysis constants and thermodynamic functions of the hydrolysis process of Cr^{3+} at different temperatures are given in Tables 1 and 2.

References

- 1 H. T. Hall and H. Eyring, J. Amer. Chem. Soc., 72 (1950) 782.
- 2 Dai Anbang and Wn Youli, J. Taiking University, 2 (1957) 631.
- 3 Luo Qinghue, Ren Jianguo, Shen Mengchang and Dai Anbang, Chemical J. Chinese Universities, 4 (1983) 407.
- 4 Luo Qinghue, Ren Jianguo, Shen Mengchang and Dai Anbang, Scientia Sinica (B), 2 (1986) 137.